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We study the dynamics of precipitate coarsening in phase-separating alloys at late stages of phase separation
by x-ray photon correlation spectroscopy (XPCS). For analyzing time series of fluctuating speckle intensities
from small-angle scattering of coherent x rays, the method of detrended fluctuation analysis (DFA), which is
ideal for determining power-law correlations, is applied. We discuss the application of DFA with respect to
XPCS data by means of simulated time series. In particular, the effects of different signal-to-noise ratios are
examined. Results from measurements of the two model systems Al-6 at. % Ag at 140 °C and
Al-9 at. % Zn at 0 °C are presented. Since the DFA effectively removes adulterating trends in the data,
quantitative agreement with Monte Carlo simulations is obtained. It is verified that two different coarsening
mechanisms are predominant in the two systems—coarsening either by diffusion of single atoms or by move-

ment of whole precipitates.

DOL: 10.1103/PhysRevE.74.041107

I. INTRODUCTION

Late stages of phase separation in alloys are characterized
by coarsening of precipitates in order to reduce excess inter-
facial energy. The usual textbook explanation of how the
precipitate coarsening proceeds is the classical Lifshitz-
Slyozov-Wagner (LSW) mechanism [1,2], where atoms
evaporate from smaller precipitates, diffuse through the ma-
trix, and condense on larger precipitates. The diffusion pro-
cess, however, is strongly dependent on the exact interplay
between vacancies and the different atom species [3]. De-
tailed Monte Carlo studies [4,5] showed that if vacancies are
preferably located in the matrix, the diffusion of single atoms
is fostered and the LSW mechanism dominates the coarsen-
ing dynamics. If, on the other hand, vacancies are preferen-
tially found in the precipitates or on their surfaces, the pre-
cipitates can move as a whole and eventually coalesce. Thus,
precipitate coagulation may also be a predominant coarsen-
ing mechanism in solids, as was suggested earlier [6].

To experimentally distinguish between the different coars-
ening mechanisms is difficult. One common approach is to
attribute the coarsening mechanism to the observed growth
law. One major result of the LSW theory is that asymptoti-
cally (t— o) the growth of the mean precipitate radius (R())
is described by a power law «¢* with A=1/3. Thereby, a
highly diluted system with an infinitely small precipitate vol-
ume is assumed. Basically, theories that take into account a
finite precipitate volume reproduce A=1/3 as growth expo-
nent; compare Ref. [7], for instance. For precipitate coagu-
lation [6,8], on the other hand, the growth exponent A was
evaluated between A=1/6 and 1/4. From the experimental
point of view, however, it does not appear feasible to decide
merely on the basis of the measured time exponent whether a
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coagulation mechanism influences the coarsening kinetics of
the precipitate microstructure [9]. Also, the actual structure
function obtained in scattering experiments, which gives a
static picture of the instantaneous mean precipitate arrange-
ment, does not allow for discriminating between different
coarsening mechanisms [5].

An alternative and promising approach is to study in situ
the coarsening dynamics with the emerging method of x-ray
photon correlation spectroscopy (XPCS), which has become
feasible with the advent of third-generation synchrotron
sources. In contrast to electron microscopy investigations,
information about processes in a large sample volume is
gained. XPCS relies on the fact that scattering of coherent
radiation from a disordered sample produces a highly modu-
lated diffraction pattern, commonly referred to as speckle
pattern [10]. This interference pattern is in direct relation to
the positions of all scattering centers in the coherently illu-
minated material. If their positions change, the correspond-
ing speckle pattern will also be modified, and the intensity of
the speckles will fluctuate in time. Measuring this intensity
for a certain scattering vector  involves a time average
(I(Q,1)); taken over the acquisition time 7, but does not
include an ensemble average, as would be the case for inco-
herent scattering. Only if the system is ergodic, i.e., fluctua-
tions are on a time scale much shorter than the counting time
and the measured time average is equivalent to an ensemble
average, can {(I(Q,1)); be replaced by the usual ensemble
average, denoted by (I(Q,1)). In the latter case, the observed
scattering is featureless apart from time-averaged correla-
tions in the sample, similar to every scattering experiment
with incoherent radiation. If, however, the dynamics is
slower than the acquisition time 7, the measurement of the
intensity fluctuations of speckles can reveal the dynamics of
the system. This is done by analyzing the temporal correla-
tions contained in the measured signal. By using coherent x
rays, atomic resolution can almost be achieved [11].
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In the aforementioned Monte Carlo study by Weinkamer
and Fratzl [5], time-dependent speckle intensities, corre-
sponding to an XPCS experiment in small-angle x-ray scat-
tering (SAXS) geometry, were simulated for coarsening via
the classical LSW mechanism as well as for predominating
precipitate coagulation. The fluctuating speckle intensities
were analyzed by fluctuation analysis (FA) and turned out to
be power law correlated. The detected correlation behavior
was dependent on the scattering vector—in a characteristic
way for each coarsening mechanism. In a recent XPCS ex-
periment, Al-6 at. % Ag at 140 °C and Al-9 at. % Zn at
0 °C were measured and the data were analyzed by means of
FA and compared to the simulation results [5], which were
published as a Rapid Communication [12]. A qualitative
agreement was found between the data for Al-6 at. % Ag at
140 °C and the LSW mechanism. For Al-9 at. % Zn at
0 °C, the results indicated coagulation of whole precipitates
as the dominant coarsening mechanism.

In this paper, we extend the analysis of our data to de-
trended fluctuation analysis (DFA) for both the simulation
and the experimental results in order to better quantify the
obtained temporal power-law correlations. Using DFA in-
stead of FA enables us to remove trends that adulterate the
correlation behavior from our data, and quantitative agree-
ment between simulation and the experiment is found.

The paper is organized as follows. In Sec. II, we introduce
FA and DFA, respectively, as the method of choice for ana-
lyzing power-law correlations. We further discuss FA and in
particular DFA for analyzing XPCS data. In Sec. III, experi-
mental details are given. Results and discussion are found in
Sec. IV.

II. ANALYZING CORRELATIONS IN XPCS TIME SERIES

The common way to analyze data of an (X)PCS experi-
ment is to calculate a correlation function of the temporal
fluctuating intensity measured at a certain scattering vector
0. In the case of equilibrium systems, the dynamics depends
only on relative times (time lags)  and the computation of
the normalized intensity-autocorrelation function g®(r) is
sufficient. If one measures the speckle intensity at N discrete
time steps k, g(z)(t) is calculated as

1 N-t
N_; tE oy ALAL,

(n? ’

with discrete time lags t=0,...,N—1, I, the intensity in the
kth time bin, and intensity fluctuations Af,. The latter are
given by

g0 = (1)

N
1
AL =1,—{I), where (I)=—>1I,. )
Nk:l

Note that in the case of nonequilibrium systems, the dy-
namics depends on the absolute time. Thus, it is not suffi-
cient to consider relative time intervals by calculating the
autocorrelation function of the signal. Instead, a two-time
correlation function is typically used. In recent papers, that
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approach was chosen for studying phase-ordering [13,14]
and phase-separating systems [15], respectively.

The autocorrelation-function technique is particularly
suited for revealing short-term correlations like an exponen-
tial decay of g'?(r). Typically, the latter occurs for Brownian
motion in colloidal suspensions [16—18], i.e., in dependence
on the scattering vector, g () < exp(~t/ ) is found and cor-
relation times 7. are gained.

The situation, however, changes if long-term power-law
correlations have to be resolved, implying

¢P() o with0<y<1. (3)

In particular, on longer time scales g (¢) becomes statisti-
cally unreliable. Furthermore, it shows artifacts in the pres-
ence of trends, caused, for example, by an unstable overall
intensity during the measurement time. In general, a “trend”
is a systematic change of the mean of a time series. In data
with a trend, the autocorrelation function is no longer de-
fined, actually. More generally speaking, a time series be-
comes nonstationary if the mean or the variance or other
important statistical properties like autocorrelations change
with time. Nonstationarities are often caused by extrinsic
processes.

The problem of statistical accuracy can be avoided by
using fluctuation analysis (FA). Furthermore, FA can easily
be extended to detrended fluctuation analysis (DFA), which
makes it possible to circumvent the problem of trends. Both
FA and DFA are techniques that were originally introduced
for the determination of long-range correlations in the se-
quence of base pairs in the DNA [19,20] and were further
successfully applied to, e.g., the analysis of climate records
[21], heartbeat time series during sleep [22], and economical
time series [23].

In calculating the (D)FA, we consider the integrated time
series or “profile”

J
Y(j) = 2 AL (4)
k=1

In the case of FA, the so-called fluctuation function F(¢) is
given by

F( = \V(YG+0-Y()P, (5)

where the angle brackets represent an average over all pairs
with the same time lag ¢. In the case of DFA, the profile, Eq.
(4), is divided into nonoverlapping segments of size ¢, where
t will be the scaling variable, i.e., the aim is to measure the
fluctuations on the time scale ¢ while simultaneously elimi-
nating trends (“detrending” of the data). For DFA of order n
(DFAn), in each segment Y(j+1) to Y(j+1) [or equivalently
Y(j+i) with i=1,... 7], the best fit of a polynomial p(i) of
order n is determined. In this way, trends of order n in the
profile and of order n—1 in the raw data, respectively, are
removed [24]. In practice, it is mostly sufficient to use
DFA3, and higher orders need not be calculated [25]. In the
following, we thus concentrate on third-order detrended fluc-
tuation analysis when discussing the evaluation of our XPCS
data.
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FIG. 1. (Color online) Analysis of simulated power law-
correlated data (y=0.7) with the classical autocorrelation function
g@(2) (solid black line) and the fluctuation function F(r) calculated
with FA (open circles) and DFA3 (open triangles), respectively.
Double-logarithmic plot. Curves are shifted along the y axis for
clarity. The red arrow marks the point where the autocorrelation
function becomes negative for the first time. The scaling behavior
on longer time scales is completely inaccessible in that approach.
The dashed gray line indicates y=0.7. A reasonable fit is hardly
possible. (D)FA, on the other hand, yields the correct scaling be-
havior over many orders of magnitude. The dash-dotted gray lines
indicate @=0.65, compare Eq. (7), which can be perfectly fitted.

In the next step, the variance of the profile Y(j+i) from
the polynomial p (i) is calculated,

F0=-S G +)-p 0. (6)
i=1

sz-(t) is averaged over all segments and finally the square
root is taken to get F(z).

To gain information about the correlations in the intensity
fluctuations, the scaling behavior of the fluctuation function
has to be analyzed. F(¢) is fitted by a power law F(r) oz,
with « the so-called fluctuation exponent, which is a measure
for the degree of correlation or persistence in the system.
Thereby, “persistence” denotes the tendency of a random
variable to keep its actual value. In analogy to random-walk
theory, a=1/2 is found for uncorrelated data and &> 1/2 for
data containing long-term correlations [24,25]. The fluctua-
tion exponent « is related to the correlation exponent 7,
compare Eq. (3), by

a=1-17/72. (7)

Before coming to a more detailed interpretation of F(r), it
is instructive to have a look at an example that illustrates the
application of (D)FA to power-law correlated data in com-
parison with the autocorrelation function approach. For that
purpose, a series of long-range correlated random numbers
with a correlation exponent y=0.7 was generated with a
Fourier filtering method. A brief description of that method
together with an advanced algorithm for generating long-
range correlations for large systems can be found in Ref.
[26]. Figure 1 shows the autocorrelation function of those
data as well as fluctuation functions obtained from FA and
DFA3 evaluations in a double-logarithmic plot.
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Clearly, the autocorrelation function fails to characterize
the correlation behavior on longer time scales. The correct
scaling behavior (y=0.7) is indicated only on relatively short
time scales, see the dashed gray line for comparison, but
even there a reasonable fit is not a trivial task. The fluctua-
tion functions, on the other hand, yield the correct long-term
correlations with slopes in the double-logarithmic plot of «
=0.65 (indicated by the dash-dotted gray lines) over many
orders of magnitude, even at late times. Only the first few
points of the DFA3 curve do not lie on the corresponding
straight in the double-logarithmic plot, which is an artifact
caused by the construction of the DFA-fluctuation functions
[24]. Fitting the correct fluctuation exponent « is thus easily
possible.

The interpretation of the resulting fluctuation function can
be understood in analogy to the random walk of a particle in
one dimension in space. If A, in Eq. (4) denoted the (uncor-
related) step of the particle at time step k, the profile Y(j)
would correspond to the position of the random walker after
J time steps. Furthermore, Eq. (5) would describe its root-
mean-square displacement after 7 steps. According to Ein-
stein, the root-mean-square displacement \m of a random
walker grows with the square root of time,

V(x?*) = 2Dyt (8)

with Dy, the diffusion coefficient. Hence, if there are no cor-
relations present in the XPCS data, we expect

F(r) < t* with a=1/2. 9)

If, on the other hand, the diffusion became anomalous,
i.e., if the random walk were accelerated on all time scales
(“superdiffusion”), the movement of the random walker
would become long-term correlated and its root-mean-square
displacement would grow faster than with the square root of
time, yielding a>0.5. Hence, if there are (long-term) corre-
lations in our XPCS data, we expect

F(f) =< t*  with a> 1/2. (10)

Note that by construction the maximum « value detect-
able with FA is a,,,=1, whereas DFAn can resolve o,
=1+n [24]. This is of importance when the correlation be-
havior becomes nonstationary. In an XPCS experiment, «
>1 can be caused by a strong persistence in the investigated
system, which gives rise to quite monotonic increase or de-
crease of the measured intensity over longer time segments.
In addition, trends in the data can lead to spurious results
with @>1. Successively applying DFA of higher order re-
moves these trends, i.e., only the real scaling behavior re-
mains.

An example for a>1 that can be simulated easily is
random-walk dynamics, where a=3/2 is obtained [25]: If
the A7, in Eq. (4) were already given by a random walk, i.e.,
if they corresponded to the position of a diffusing particle,
the mean of AJ, itself would increase as (Al,) k. In this
case, the calculation of the profile in Eq. (4) involves an
additional summation over time (or integration if considered
as a continuous process). This integration increases the scal-
ing exponent « by 1, leading to
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F(t) < t* with a=3/2. (11)

Concerning the interpretation of fluctuation functions cal-
culated from XPCS data, there are three other issues of
which one must be aware. First, although intensities are mea-
sured, it is phase information that is retrieved, because the
phasing of the scattered photons determines the detected in-
tensity fluctuations. In principle, any phase information is
modulo 2. Due to the dynamics in the sample, the phase of
the scattered photons changes temporally. Hence, e.g., for
random-walk dynamics, we can expect «=3/2 in principle
and a=1 for the restricted FA fluctuation functions, respec-
tively. However, after an additional phase difference of 2
between interfering scattered waves is exceeded, the situa-
tion becomes indistinguishable from the initial state. Thus, if
the dynamics is sufficiently fast, «>1/2 will not be ob-
served on very large time scales. Second, when detecting
single photons, the measurement is accompanied by shot
noise. The question is how this statistical noise affects the
fluctuation functions. And third, in the experiment the signal-
to-noise ratio is further deteriorated by the limited coherence
of real x-ray beams.

In the following, we use simulated data for a random walk
of phases to illuminate the above points. The variable x;
denotes the position of a single random walker in one dimen-
sion at time step k and is recursively defined by x;=x;_;
+r, with xy=0 and uncorrelated random numbers (steps) r
(continuous distribution —0.1<r,<<0.1). The corresponding
instantaneous scattering intensity in an XPCS experiment
with perfect coherence conditions will be I°" sin® x;, with

max

" the maximum coherent intensity. However, since single
photons are registered in the experiment instead of continu-
ous intensities, the measurement result is affected by shot
noise. In order to account for the shot noise at each time step,
%" sin? x, is not considered, but rather a random number
from a (discrete) Poisson distribution with mean &
=I°" sin? x,. The random variable representing the number
of photon counts at time step & is thus

L=[I% sin® x;Jpp. (12)

with [ €]pp denoting a random number from a Poisson distri-
bution with mean & Note that in reality not only are the
detected numbers of scattered photons Poisson-distributed,
but also the intensity of the incoming x-ray beam obeys Pois-
son statistics, since the generation of x rays in a synchrotron
is a random process. Furthermore, the intensity distribution
for scattering of perfectly coherent photons at a disordered
material obeys negative exponential statistics [27]. For the
sake of clarity and simplicity, these additional distributions
are omitted here. In modeling data for tests of the DFA analy-
sis, there is no need to simulate the exact distribution of the
data. We only need to simulate a realistic correlation behav-
ior, because DFA results are rather independent of the exact
distribution of the intensities as long as their moments do not
diverge.

Figure 2 shows resulting DFA3 fluctuation functions for
time series generated according to Eq. (12) with different
maximum coherent intensities that range from I

max

=102 (®) to I°"=10* (@). Due to the Poisson statistics,

max
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FIG. 2. Illustration of the effect of Poisson noise on DFA3
curves by means of simulated random walks of phases according to
Eq. (12). Ifn”:X=104 (@), 10°(O), 10%(V¥), 10' (A), 10° (m),
107" (), and 1072 (@ ). Perfect coherence conditions are assumed,
i.e., no incoherent background is present. Double-logarithmic plot.
Curves are shifted along the y axis for clarity. Dotted gray lines
indicate slope 1/2 and the dashed gray line corresponds to «

=3/2.

the curves correspond to cases with different signal-to-noise
ratios. Each curve represents an average over 10 runs with
10° time steps each.

For high intensities [IICT?:X=104 (@) and If;’$x=103 (0O)]
with a relatively low Poisson noise, the fluctuation functions
exhibit @=3/2 followed by a crossover to a=1/2 at t
~3000. This crossover is solely determined by how fast the
random walk of phases advances. The crossover time 7
~3000 corresponds to the time needed for the random walk
to increase or decrease by r, because 7 is the period for the
intensity. This implies a root-mean-square displacement of
\{(x*(7))=m. Since the mean-square step width of the ran-
dom walk is 2Dy=(r*) and

1
r?dr=—— (13)

1
2N
<r>_ 3007

0.2J .1

we obtain 7=(x*(7))/(2D,)=3007= 3000.

For lower intensities with increasing Poisson noise, «
=1/2 is also found on short time scales, followed by a cross-
over to a=3/2, and finally by the crossover back to «
=1/2 at t=r. The first crossover (from a=1/2 to 3/2) is
similar to the crossover observed in long-term correlated
data with additional large uncorrelated spikes [28], although
it is caused here by additional random fluctuations due to the
stationary, i.e., continuously present, shot noise. The cross-
over is shifted to longer time scales with increasing shot
noise (decreasing intensity). While there is no problem for
intermediate and moderate intensities, the shift of the first
crossover makes the detection of the correct scaling behavior
quite difficult for low intensities [1°" =10~" ((J)] and even
impossible for very low intensities [Iﬁfxz 1072 ()]

In real experiments, the signal-to-noise ratio is further
limited by nonperfect coherence properties of the used x-ray
beam, causing a limited speckle contrast (or “visibility”).
The question arises whether DFA fluctuation functions from
such data can be reasonably evaluated. In order to answer
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FIG. 3. Illustration of the effect of Poisson noise plus an addi-
tional incoherent background, IL“VC, on DFA3 curves by means of
simulated random walks of phases according to Eq. (14).
(A): I =10, I™=0. (A):I°" =10, I™=45. Double-logarithmic
plot. Curves are shifted along the y axis for clarity. Dotted gray
lines indicate slope 1/2 and the dashed gray line corresponds to

a=3/2.

this question, we extend our example of a random walk of
phases by introducing a mean “incoherent” background I}
The simulated count number at time step k then reads

Ik — [Icoh

<oh sin? x; + I"Tpp, (14)

with 7™ the mean incoherent background. Again, in the mod-
eling of the intensity correlation behavior for our DFA study,
the exact intensity statistics for scattering of partially coher-
ent photons, which can be described by a gamma distribution
[27], is not taken into account for the sake of clarity and
simplicity. For a detailed discussion of how partial coherence
affects measured x-ray speckle patterns, see, e.g., Refs.
[29-31].

If we chose I =

) | max
ent intensity of

10 and I"°=45, we have a mean coher-

1 2w
1§3h=;J I sin” x dx =5 (15)
0

and thus a coherent fraction of 10%. In our experiment, the
contrast 3, i.e., the instantaneous coherence, was estimated
as B~=~12%; see Sec. III for details. Note that the contrast
depends on the actual setup and may thus vary from experi-
ment to experiment. For example, Livet et al. reported 8
~25% when they studied unmixing in an Al-Li alloy with
XPCS [15]. The following considerations can thus be re-
garded as reasonable assessment.

The coherent fluctuations are estimated by the standard
deviation

1 2 , ] 5
omh:\/—f (1 sin® [ de= . (16)
27T 0 \'2

This means that although the coherent fraction is only 10%,
the fraction of coherent fluctuations is still 50%, since we
find for the relation between o, and the overall Poisson
noise op

S S (17)

Figure 3 shows the resulting fluctuation function (A) in com-
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parison with the fluctuation function without an incoherent
background.

As can be seen, the first crossover is further shifted to
longer time scales. Although further reduced, the region with
a=3/2 is still accessible and hence DFA can be used to
analyze the scaling behavior. Note that in the case of very
slow dynamics, the second crossover from a=3/2 to 1/2
would not be seen and the application of DFA would be even
more reasonable.

III. EXPERIMENTAL DETAILS

The XPCS experiments were performed at the undulator
beamline ID10A at the European Synchrotron Radiation Fa-
cility, Grenoble [29] in SAXS (transmission) geometry with
the two phase-separating systems, Al-6 at. % Ag at 140 °C
and Al-9 at. % Zn at 0 °C. Both are well-known model sys-
tems for precipitate growth [32-35], where the minority
component forms precipitates. Due to small lattice misfits,
spherical precipitates with the same lattice structure as the
matrix are found. In the case of the Al-Zn system, size ef-
fects can cause a precipitate anisotropy [36]. However, in the
experiments carried out in the frame of the study at hand,
possible local anisotropies could not be detected within the
measured Q range. Both systems show a self-similar evolu-
tion of the microstructure, i.e., without an absolute gauge it
is not possible to determine whether the coarsening process
has just started or is already in a very late stage. This implies
a scaling structure function, S(Q,¢) [32,35]. When scaled to
the Q value of the occurring peak in the small-angle scatter-
ing curve, Q... the scattering function becomes time-
independent.

Evaluating the reduced temperature 7/7,, where the criti-
cal temperature for the miscibility gap, 7,, is taken from
the equilibrium phase diagram, yields =0.55 for the
Al-6 at. % Ag and =0.61 for the Al-9 at. % Zn measure-
ment. This means that the measurements are both well com-
parable between each other and performed at reduced tem-
peratures where no coarsening mechanism is excluded by
theory [37].

To ensure that our samples were in the coarsening regime
of phase separation, samples were first homogenized for 48 h
at 550 °C (Al-6 at. % Ag) and for 135 min at 400 °C
(Al-9 at. % Zn), respectively. Afterwards, Al-6 at. % Ag
was annealed at the measurement temperature of 140 °C for
47 h, Al-9 at. % Zn at 0 °C for 82 h. In contrast to recent
measurements of Livet e al. [15] and Malik et al. [38], re-
spectively, our experiments were performed in quasiequilib-
rium, i.e., the sample temperature was low enough to prevent
significant precipitate growth during a single measurement,
which lasted a few hours. In all cases, SAXS-diffraction pat-
terns taken before and after the XPCS measurements did not
show any change, i.e., the mean precipitate size did not
change measurably. For estimating the mean-precipitate ra-
dius (R), a Guinier analysis [39] was performed on the high
angle side of the scattering function [40,41] (Q> Qa0
yielding (R)~8.5 nm for Al-6 at. % Ag and (R)~3.0 nm
for Al-9 at. % Zn.
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FIG. 4. (Color) Typical region of interest of the SAXS-diffraction pattern of the Al-9 at. % Zn sample at 0 °C. Logarithmic
pseudocolor-intensity scale from 1 to 35 photons (dark to bright). For improving statistics, the sum of 10 frames (1 s exposure each) is
shown, where a dark file was subtracted from each frame before summing. Since the coarsening dynamics was very slow, the speckle

structure (“graininess”) is clearly visible and not washed out.

The x-ray energy, selected by a Si(111) monochromator,
was 8 keV, corresponding to a wavelength of A=1.55 A. An
energy resolution of AE/E=1.4X10~* provided the tempo-
ral coherence. Since the XPCS experiments were done in
SAXS geometry, the maximum path-length difference of
scattered photons was well below the limit set by the longi-
tudinal coherence length of &=~\?/AN=~1.11 um. A circular
pinhole aperture of diameter d=12 um approximately 20 cm
upstream of the sample was used to constrain the beam to a
spatially coherent cross section, approximately. A guard slit
in front of the sample was used to eliminate parasitic scat-
tering from the pinhole.

For determining the contrast S, the intensity statistics of a
(partially coherent) experimental speckle pattern was ana-
lyzed. The same methods as described in Refs. [29,30] were
applied. First, the probability density of the speckle intensity
was calculated and analyzed, assuming that the observed
speckle pattern was the intensity sum of M independent
speckle patterns, implying S=1/M. Second, a normalized
two-point correlation function

i)
Crvrs) = i) (18)

was calculated, where r,, are points in the detector image
plane and the angle brackets indicate a spatial average over
the region of interest. In the limit of zero pixel separation,
this correlation function is 1+ 3. Both methods yielded the
same result B8~ 12% within the error bars.

For optimizing the SAXS signal, sample thicknesses were
46 pm for Al-6 at. % Ag and 70 um for Al-9 at. % Zn,
respectively, corresponding to an intensity transmission of
1/e each. The Al-6 at. % Ag sample was measured in an
evacuated transmission furnace with kapton windows,
whereas the Al-9 at. % Zn sample was mounted on a cool-
ing tip that was kept at ice-water temperature.

Time series of up to N=8192 speckle patterns (“frames”)
were taken with a direct-illumination CCD camera (Prince-
ton Instruments, 1242X 1152 pixels, pixel size 22.5
X 22.5 um?) mounted on a table at a distance of L=2.3 m
from the sample. Since the estimated speckle size was
~[N/d=29.7 pm, the spatial resolution of the detector was
high enough to resolve the speckle structures. As shown in
Ref. [12], ring-like SAXS patterns were obtained, caused by
isotropic shape and arrangement of the precipitates. When
measuring near the SAXS maximum, which defined Q..
the exposure time was typically 1 s. To save readout time
and to cover the largest possible range of the scattering vec-

tor Q, rectangular regions of interest with AQ,>>AQ. were
chosen, thus allowing for a total repetition rate of one frame
per 1.65 s, typically. Due to the isotropy of the SAXS signal,
no loss of information occurred. Since the whole CCD de-
tector covered a maximum Q range of 0.049 A~!, up to three
consecutive measurements with different, slightly overlap-
ping positions of the CCD camera were performed. The
maximum Q range accessible was limited to about 0.18 A‘l,
due to insufficient scattering intensity for larger Q.

For comparison with the experiments, we have performed
Monte Carlo simulations on an fcc lattice, where the 1283
sites were occupied by two species of atoms and a vacancy
[5]. Considering a pairwise interaction between the atoms,
the Hamiltonian can be written as an extended Ising model
with two parameters. The ordering energy J defines the in-
teraction between the atoms and was chosen to induce phase
separation. Important for this work is the asymmetry param-
eter U, which characterizes the interaction between the va-
cancy and the atoms and thus determines the preferred loca-
tion of the vacancy. It was shown [5] that the choice
U=+J results in a preferred location of the vacancy inside
the precipitates, leading to coarsening via precipitate coagu-
lation. With the second investigated choice U=-J, the va-
cancy prefers the matrix and coarsening proceeds via the
LSW mechanism. Changes in the configuration were per-
formed by exchanges of the vacancy with neighboring atoms
(vacancy dynamics) using a standard METROPOLIS algorithm.
Further details of the simulation procedure can be found in
Ref. [5]. For the XPCS computer experiment, the scattering
intensity was determined at 100 equidistant time steps, where
the low number of time steps guarantees quasiequilibrium
conditions also in the simulation. The interval between two
time steps was chosen to allow for a close comparison with
the XPCS measurements.

IV. RESULTS AND DISCUSSION

Figure 4 shows a speckled SAXS pattern of the
Al-9 at. % Zn sample, where the maximum of the scattering
function is visible at the left side of the frame.

For improving statistics, 10 frames (1 s exposure each)
were summed, and since the coarsening dynamics was very
slow, the speckle structure is clearly visible and not washed
out. Before summing, a dark file was subtracted from each
frame in order to get rid of the dark current of the CCD. As
a dark file, the average of 30 dark pictures, i.e., frames taken
with x rays off, was used.
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FIG. 5. DFA3 results for Al-9 at. % Zn at 0 °C. Double-
logarithmic plot. Dashed gray lines indicate a=1/2. (a) Typical
fluctuation functions for three different scattering vectors: Q/Q .«
=1.04 (O), O/ Qmax=2.02 (V), and Q/ Qp,x=3.07 (O0). (b): Typical
fluctuation functions for time series consisting of concatenated time
series from 10 consecutive pixels. That is, if p pixels are contained
in a 20-pixel-wide annulus, p/10 (which is an integer) fluctuation
functions of time series of length N’ =10N are calculated, each con-
sisting of 10 concatenated time series of length NV from consecutive
pixels. The plotted F(r) represents the average of the so-obtained
p/10 fluctuation functions. Scattering vectors are the same as in (a).
Note the improved statistics in the a> 1/2 range, which can be well
fitted now. For the sake of clarity, only the fit for the middle curve
is shown, full black line, yielding a=0.66.

The data evaluation was done for 20-pixel-wide annuli,
each attributed to a certain Q value. For each pixel in such an
annulus, DFA fluctuation functions were calculated and fi-
nally averaged. Figure 5(a) shows typical DFA3 fluctuation
functions for the Al-9 at. % Zn data, taken at small, inter-
mediate, and large scattering vectors.

On time scales up to almost half of the measurement time,
a=1/2 is found due to uncorrelated noise in the data. Then,
a crossover to a>1/2 is observed. A further crossover to
a=~1/2 again is not seen.

In general, the DFA method shows a much larger initial
regime with a=1/2 (corresponding to uncorrelated noise)
than the FA method; see, e.g., the FA curves for
Al-6 at. % Ag in Ref. [12], for comparison. The reason is
that crossovers are shown more sharply by the DFA fluctua-
tion functions that can also exhibit larger slopes in the
double-logarithmic plot. Additionally, the following cross-
over to a>1/2 is shifted to larger and larger time scales
with each order of detrending [24]. As a consequence, a fit of
the &> 1/2 region in Fig. 5(a) is statistically not reasonable.
In order to find a remedy, one can analyze concatenated time
series of consecutive pixels. That is, if p pixels are contained
in a 20-pixel-wide annulus, one calculates p/10 (which is an
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integer) fluctuation functions of time series of length N’
=10N, each consisting of 10 concatenated time series of
length N from consecutive pixels. Finally, the so-obtained
p/10 fluctuation functions are averaged. This procedure en-
larges the a>1/2 region and improves the statistics. In order
to avoid jumps between the parts of the concatenated series,
each part is multiplied by a constant number, so that its first
value is identical with the last value of the previous one.
Figure 5(b) shows the DFA3 results for time series consisting
of 10 concatenated time series of consecutive pixels. The
statistics of the a>1/2 region appears to be well improved,
making reasonable fitting possible; compare the full black
line in Fig. 5(b).

When fitting our data, the upper limit for the fit range was
given by the length of the time vector of a single pixel, i.e.,
10% of the concatenated time series. The lower fit-range
limit was determined by the crossover from uncorrelated
(a=1/2) to correlated behavior (a«>1/2) in the fluctuation
function for the smallest Q/Q,,.x value and was kept con-
stant for all further Q/Q .-

If the parts of the concatenated time series were com-
pletely uncorrelated, the DFA would yield @=1/2 for time
scales larger than the measurement time. However, the fluc-
tuation exponent obtained on very long time scales seems to
be approximately zero. Most probably, this behavior comes
from the spatial correlations between neighboring pixels.
Since the speckle size was estimated to be slightly larger
than one pixel, the time series of neighboring pixels are not
completely independent. Rather, there is a periodicity in the
concatenated series, the period time being the total recording
time. Periodic series, however, exhibit a=0 on scales larger
than their period [42].

From Fig. 5(b), we may already infer that the dependence
of the DFA3 fluctuation functions on the scattering vector
0O/ Qmax 18 qualitatively similar to the FA case, shown in Ref.
[12]. For small scattering vectors (Q/Q..x= 1), the maxi-
mum « value is found and decreasing « values with increas-
ing scattering vectors are obtained. Note, however, that in the
DFA case, a>1 can be detected.

Figure 6 shows the collected DFA3 results for the concat-
enated time series of Al-6 at. % Ag at 140 °C, full red
circles, and Al-9 at. % Zn, full red triangles.

The dependence of a on Q/Q,,. indicates high persis-
tence on long length scales in real space, with the maximum
at Q/Qnax=1. Since our measurements were done under
quasiequilibrium conditions, the mean precipitate interdis-
tance stayed constant during the measurements. Thus the
highest persistence is expected for Q/Q..=~1. What is in-
teresting is the fact that in the case of Al-6 at. % Ag at
140 °C, the « values are greater than 1, indicating an en-
hanced persistence [43] that causes nonstationary fluctua-
tions that yield a values almost as high as for random-walk
dynamics (a=1.5). In the case of Al-9 at. % Zn at 0 °C, a
qualitatively different coarsening dynamics is already indi-
cated by the dramatically different fluctuation exponent for
0/0Qmix=1, where a does not exceed 1. This is a clear de-
viation from the pictures we obtained in our study of simu-
lated data (see Sec. II), where only regimes with a=1/2 (due
to noise or fast dynamics) or @=3/2 (due to a random walk
of phases) were observed in addition to intermediate cross-
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FIG. 6. (Color online) Fluctuation exponent « from DFA3
vs  Q/Qmax. Al-6at. % Ag at 140°C, full red circles.
Al-9 at. % Zn at 0 °C, full red triangles. Fluctuation exponents
from MC simulations [5]: Coarsening via LSW mechanism with
scaled intensity plus background, open black circles. Coarsening via
coagulation mechanism with scaled intensity plus background, open
black triangles. The agreement between the LSW and the
Al-6 at. % Ag data, and the coagulation and the Al-9 at. % Zn
data is good, even quantitatively. Error bars indicate fit errors.

over regimes. Hence, our result of =1 for Q= Q, . seems
to suggest that the dynamics of Al-9 at. % Zn on large
length scales in real space might indeed not be characterized
by random-walk processes, i.e., by diffusion. Instead, the
value a= 1 is characteristic of 1/f noise, which is ubiquitous
in nature and often considered as a signature of self-
organized criticality [44]. The difference between the
a(Q/ Q) curves is further pronounced for midrange
0/ Qpnaxs Where the Al-6 at. % Ag curve lies considerably
above the Al-9 at. % Zn curve. For large Q/Q,. both
curves decay to a=1/2, indicating only random uncorrelated
fluctuations.

The open black symbols in Fig. 6 represent simulation
results—open black circles for coarsening via the LSW
mechanism and open black triangles for a predominant co-
agulation mechanism. In order to emulate the experimental
conditions, the maximum simulation intensity was scaled to
the maximum experimental intensities and, additionally,
noise was introduced to account for the incoherent back-
ground [12]. Corresponding to the experimental data, this
causes different signal-to-noise ratios in the simulated data.
Note that the different signal-to-noise ratios may affect the
fluctuation-function shape and thus the effectively deter-
mined « values, as was shown in Sec. II. Thus, different
a(Q/Qmax) curves may be obtained from simulations with
different signal-to-noise ratios, even if there is always the
same coarsening mechanism employed. An extreme example
for this behavior can be found in Ref. [45]. There, quite
different a(Q/ Q) curves are derived from simulated data
as well as from experimental data for systems showing the
same predominant coarsening mechanisms as in the present
study, but having quite different signal-to-noise ratios. Since
modest signal-to-noise ratios cause a broad initial F(¢) re-
gime of a=1/2, the determined « values were quite small in
that case [45]. Also note that in Ref. [45], the FA technique
was used for calculating fluctuation functions F(¢). Thus, the
maximum « value detectable was 1, and possible crossovers
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in F(¢), from an initial uncorrelated regime(a=1/2) to a cor-
related regime (a>1/2), appeared quite broad, in principle.

Coming back to Fig. 6, the rather large error bars from the
fits of the simulation data are caused by the fact that simu-
lated speckle patterns are available for only 100 time steps,
since the quasiequilibrium condition had to be fulfilled also
in the Monte Carlo simulations [5]. Since crossovers in the
fluctuation functions are shifted to later time scales with
higher detrending orders [24], the statistical significance of
the parts of the DFA3 fluctuation functions that govern the
true correlation behavior is limited for the simulation data.

Nevertheless, the agreement between the experimental
and simulation curves is good, even quantitatively. Note that
in contrast to the FA results presented in Ref. [12], the
a(Q/ Qmax) curves from DFA3 need not be scaled to each
other in order to enable a better comparability. Further note
that since crossovers appear sharper in fluctuation functions
from DFA than from FA, fitting over crossovers in DFA3-
fluctuation functions can be avoided, usually. Thus, it is not
surprising that the a(Q/Q,,,x) curve for Al-9 at. % Zn ex-
hibits greater « values than was found in Ref. [12]. In the
case of Al-6 at. % Ag, the DFA3 evaluation yielded maxi-
mum « values greater than 1 that could not be detected with
FA, in principle.

The results suggest that coarsening in Al-6 at. % Ag at
140 °C proceeds via the well-known LSW mechanism,
whereas in Al-9 at. % Zn at 0 °C precipiate coagulation is
predominant. A rough estimate where vacancies are prefer-
ably found in the two systems supports this conclusion. For
this purpose, the melting temperatures 7, of the alloy con-
stituents are considered [4]. If the melting point of the pre-
cipitating constituent is lower than that of the matrix, vacan-
cies will rather be found in the precipitates than in the
matrix, and vice versa. Having T21=933 K, T2g=1234 K,
and T2"=693 K gives a hint for a more prominent role of the
coagulation mechanism in Al-9 at. % Zn than in
Al-6 at. % Ag.

On the other hand, the picture for understanding the dif-
ferent shape of the a(Q/Qax) curves for different coarsen-
ing mechanisms, which has already been derived from the
FA results [12], still holds: At medium values of Q/Qax
structures in real space are probed on a length scale that
compares to the average precipitate size. Precipitate move-
ment, in the case of coarsening via coagulation, implies
rather strong shape changes of single precipitates due to the
rearrangement of atoms on precipitate surfaces, whereas in
the LSW case the shape of single precipitates remains prac-
tically unchanged when single atoms evaporate from and
condense on precipitate surfaces. Consequently, intensity
fluctuations are less correlated for the coagulation mecha-
nism, and smaller « values than for the LSW mechanism are
obtained. At small scattering vectors, structures in real space
are probed on even larger length scales. There, no details of
precipitate shape—particularly no shape changes—are vis-
ible, which yields higher correlated signals. In the case of
coarsening via the LSW mechanism, the structural rearrange-
ment of the precipitates is characterized by diffusive motion
(random-walk behavior) with very high persistence such that
the fluctuations are nonstationary and « values greater than 1
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are observed. In the case of coarsening via the coagulation
mechanism, on the other hand, the diffusive motion seems to
be replaced by 1/f fluctuations, which are exactly on the
border line of stationarity and nonstationarity and are remi-
niscent of self-organized criticality [44]. At high O/ Q, .« the
dynamics is probed on very short length scales in real space,
where smaller and smaller fluctuation exponents « indicate
less and less correlated behavior for both the LSW and the
coagulation mechanism dominating.

In conclusion, we presented in detail how detrended fluc-
tuation analysis (DFA) can be used to analyze data of an
x-ray photon correlation spectroscopy (XPCS) experiment.
In this way, coarsening dynamics in phase-separating alloys
at late stages of phase separation is studied. We not
only confirm the qualitative findings for different
coarsening mechanisms in Al-6 at. % Ag at 140 °C and
Al-9 at. % Zn at 0 °C [12], but we actually find good quan-
titative agreement between experimental and simulation re-

PHYSICAL REVIEW E 74, 041107 (2006)

sults. Thus, XPCS in combination with DFA represents a
unique possibility for unambiguously identifying coarsening
mechanisms in phase-separating alloys.
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